Analysis and finite element approximations for distributed optimal control problems for implicit parabolic equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis and finite element approximations for distributed optimal control problems for implicit parabolic equations

This work concerns analysis and error estimates for optimal control problems related to implicit parabolic equations. The minimization of the tracking functional subject to implicit parabolic equations is examined. Existence of an optimal solution is proved and an optimality system of equations is derived. Semi-discrete (in space) error estimates for the finite element approximations of the opt...

متن کامل

Adaptive Mixed Finite Element Methods for Parabolic Optimal Control Problems

We will investigate the adaptive mixed finite element methods for parabolic optimal control problems. The state and the costate are approximated by the lowest-order Raviart-Thomas mixed finite element spaces, and the control is approximated by piecewise constant elements. We derive a posteriori error estimates of themixed finite element solutions for optimal control problems. Such a posteriori ...

متن کامل

Finite Element Methods for Optimal Control Problems Governed by Linear Quasi-parabolic Integro-differential Equations

Linear quasi-parabolic integro-differential equations and their control appear in many scientific problems and engineering applications such as biology mechanics, nuclear reaction dynamics, heat conduction in materials with memory, and visco-elasticity, etc.. The existence and uniqueness of the solution of the linear quasi-parabolic integro-differential equations have been studied by Wheeler M....

متن کامل

Implicit-explicit multistep finite element methods for nonlinear parabolic problems

We approximate the solution of initial boundary value problems for nonlinear parabolic equations. In space we discretize by finite element methods. The discretization in time is based on linear multistep schemes. One part of the equation is discretized implicitly and the other explicitly. The resulting schemes are stable, consistent and very efficient, since their implementation requires at eac...

متن کامل

Adaptive Finite Element Approximation for Distributed Elliptic Optimal Control Problems

In this paper, sharp a posteriori error estimators are derived for a class of distributed elliptic optimal control problems. These error estimators are shown to be useful in adaptive finite element approximation for the optimal control problems and are implemented in the adaptive approach. Our numerical results indicate that the sharp error estimators work satisfactorily in guiding the mesh adj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2009

ISSN: 0377-0427

DOI: 10.1016/j.cam.2009.02.092